
ar
X

iv
:1

40
8.

36
45

v2
  [

cs
.C

C
] 

 2
0 

A
ug

 2
01

4

The “Game about Squares” is NP-hard

Jens Maßberg

Institut für Optimierung und Operations Research, Universität Ulm,

jens.massberg@uni-ulm.de

November 20, 2021

Keywords: Game about Squares, NP-hardness, computational complexity

Abstract

In the “Game about Squares” the task is to push unit squares on an

integer lattice onto corresponding dots. A square can only be moved into

one given direction. When a square is pushed onto a lattice point with

an arrow the direction of the square adopts the direction of the arrow.

Moreover, squares can push other squares.

In this paper we study the decision problem, whether all squares can

be moved onto their corresponding dots by a finite number of pushes. We

prove that this problem is NP-hard.

1 Introduction

The “Game about Squares” [2] is an addictive game where unit squares have to
be moved on an integer lattice onto dots of the same color. It has been released
by Andrey Shevchuk in July 2014. In the meantime several clones of the game
are available for different platforms.

The basic rules of the game are the following:
Let D = {(−1, 0), (1, 0), (0,−1), (0, 1)} (left, right, down and up, respec-

tively) be a set of directions. The game is played on an infinite integer lattice
Z
2. An instance (S, p(S), f(S), d(S), A, p(A), d(A)) of the game consists of

• A finite set of squares S with different initial positions p : S → Z
2 on

the lattice. In the game the squares are represented by unit squares of
different colors.

• A final position f : S → Z
2 for every square, marked by a dot of the color

of the corresponding square. No two squares have the same final position.

• An initial direction d : S → D for every square.

• A finite set of arrows A with distinct positions p : A → Z
2 and directions

d : A → D.

The game is played in rounds. In every round the player chooses a square
s ∈ S that is pushed. Let d be the direction d(s) of the square. The square moves
one position into direction d, that is, its new position is p(s)new := p(s) + d.

1

http://arxiv.org/abs/1408.3645v2


If there is already another square s2 at the new position, s2 also moves into
direction d, independent of its own direction. If s2 lands on the position of a
third square s3, s3 also moves into direction d and so on. If a square s lands on
a position with an arrow (that is, there exists an a ∈ A with p(s)new = p(a)),
the square adopts the direction of the arrow, that is, dnew(s) := d(a).

The player wins the game if after a finite number of moves each square s ∈ S

is on its final position f(s). A winning sequence is a sequence (s1, . . . , sk), si ∈ S,
such that if in each round i ∈ {1, . . . , k} the player pushes the square si, the
game is won in round k.

The original game [2] consists of 35 levels with increasing difficulty. Between
Level 22 and Level 23 the author of the game, Andrey Shevchuk, asks “Do you
think this game is hard?”. We interpret this question in a mathematical way
(even if this has not been the intention of Shevchuk). We prove by a reduction
from Satisfiability, that the game is NP-hard. Nevertheless, it remains an
open question, if this game is in NP or if it is even PSPACE-hard.

2 Reduction from SATISFIABILITY

We prove that the game is NP-hard by a reduction from SATISFIABILITY,
which has been proven to be NP-hard by Cook [1]. More precisely we prove,
that it is NP-hard to decide if a given instance of the “Game about Squares”
(in short GaS) can be won, that is, there is a finite number of moves such that
all squares reach their final position.

Let (X, C) be a Satisfiability instance where X = {x1, . . . , xn} is a set
of variables and C = {C1, . . . , Cm} is a set of clauses over X . We construct an
instance for the GaS that can be won if and only if there is a truth assignment
π : X → {true, false} satisfying all clauses.

xi xi

p
p

x

x

Figure 1: Variable gadget for a variable xi. A black triangle shows the position
of an arrow and its direction. White triangles show the initial direction of a
square. If the left column is used by the square labeled with x then xi = true.
Otherwise we have xi = false.

In our GaS instance squares can only be moved to the left and down. To this

2



end, the initial direction of each square and the direction of each arrow is either
left or down. With this restriction we observe, that a square can never be above
or left of its initial position. If a square if below or right of its final position,
the game cannot be won. For a given square s we call a position infeasible, if
it it left or below of the final position of s or if it is above or right of the initial
position of s. Otherwise, we call the position feasible for s.

Moreover, we use in our instance so called blockers, that are squares that
are initially at their final position. Moving them from that position, they can
never be moved back to their final position. Thus in order to win the game,
blockers are not allowed to be moved.

For every variable we insert a variable gadget as shown in Figure 1. It
consists of a variable square (labeled x), a decision square (labeled p), a blocker
and two columns. The decision square can push the variable square from the
right to the left column, where the blocker ensures that these are the only two
columns that can be used. Depending on which column the variable square
moves to its final position, the variable is set to true or to false. Accordingly
we associate the literal xi with the left and xi with right column.

Cj

Cj

Dj

Dj

Figure 2: Clause gadget for a clause Cj . The two rows are colored in gray. The
clause squares has to go to its final position on the left. The square D can only
reach its final destination if the clause square uses the row at the bottom, that
is, the clause is satisfied.

For every clause Cj we insert a clause gadget as shown in Figure 2. It
consists of two rows, a clause square Cj and a square Dj indicating if the
clause is satisfied or not. Only if the clause square moves on the lower row the
indication square Dj can reach its final position.

We build a lattice containing these gadgets such that each pair of variable
columns intersects with each pair of clause rows: For i ∈ {1, . . . , n} we place the
variable gadget for xi in such a way that the variable square is at (4(i+1), 4(m+
1)) and its final position is at (4(i+ 1)− 2, 1). For j ∈ {1, . . . ,m} we place the
clause gadget for Cj such that the clause square is at (4(n + 1), 4(m − j) + 6)
and its final position is at (1, 4(m− j) + 4). See Figure 2 for an example. All
gadgets are placed into a lattice of size 4(n + 1) × 4(m + 1). Note that each
lattice point is feasible for one variable and one clause square. It remains to
specify the crossings of clause rows and variable columns.

Figure 3 shows a crossing between the columns of a variable xi and a clause
Cj that neither contains xi nor xi. Note that if a variable square pushed a

3



xi xi

Cj not sat.

Cj sat.

Figure 3: A crossing between a variable xi and a clause Cj that neither contains
xi nor xi.

clause tile ore vice versa, the pushed square changes its orientation and cannot
reach its final position.

xi xi xi xi

Cj not sat.

Cj sat.

Figure 4: A crossing between a clause Cj that contains xi (left) or xi (right),
respectively.

Finally, Figure 4 shows the crossing of a variable xi and a clause Cj that
contains xi (on the left) and clause Cj that contains xi (on the right), respec-
tively. Note that in these cases, the clause square can be pushed to the lower
row by the variable square without changing its direction if and only if the cor-
responding literal is satisfied, that is, the variable square uses the column of the
corresponding literal. Once again, the blockers ensure that the clause squares
can leave the crossing only on one of the two clause rows.

We can assume w.l.o.g. that no clause contains both xi and xi as such
clauses are always satisfied.

Lemma 1. GaS is NP-hard.

Proof. For a given SATISFIABILITY instance S with n variables and m

clauses we construct a GaS instance as shown above. Obviously, this is a poly-

4



D4

D4

C4

C4

D3

D3

C3

C3

D2

D2

C2

C2

D1

D1

C1

C1

x1

x1

p1 p1

x2

x2

p2 p2

x3

x3

p3 p3

x4

x4

p4 p4

Figure 5: GaS instance for the Satisfiability instance (x1 ∨x2)∧ (x1 ∨x3 ∨x4)∧
(x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x4).

nomial transformation: the GaS instance is placed on a grid of total size O(nm)
and contains O(n+m) squares and O(nm) arrows.

We have seen that each variable square has to use either its left or right
column in order to win the game. Once such a square has left the uppermost
row it cannot be moved to the left until it has reached the lowermost row.
Otherwise, the square would change its direction and cannot reach its final
position.

Assume that there exists a truth assignment π satisfying S. Using the de-
cision squares we push each variable square x to the columns corresponding to
π(x). As the truth assignment is satisfied, for each clause C there exists a literal
l ∈ C that is set to true by π. Now we push the clause square C to the left until
we reach the column assigned to l. Moving the variable squares down they can
be used to push the clause square into their lower rows. Now they can be used
to push the squares D by one position to the left so that they can reach their
final destination. Finally, all remaining squares can reach their final position
without problems and the game is won.

5



Now assume, that we have an instance of the game that can be won. We
define a truth assignment π by setting π(xi) = true if the variable square xi

uses its left column when moving down and π(xi) = false otherwise. Now
consider the sequence Q of pushes that is used to win the game. As for all
i ∈ {1, . . . ,m} the square Di reaches its final position, it must be pushed by the
square Ci by one to the left in one of the rounds. But then Ci has been pushed
to its lower row, which can only be done by a variable square xi such that the
corresponding literal xi or xi is in Ci and is satisfied by π. Thus each clause is
satisfied by π.

Note 2. First note that each instance of the game can be restricted to a grid

of size O(|S|(|S|+ |A|)×O(|S|(|S|+ |A|). If there are more than |S| succeeding
rows or columns that neither contain squares, final positions nor arrows, we can

delete all but |S| of them. Thus the size of the grid is polynomially bounded in

the size of the input. For the problem to be in NP, we have to show that for

every instance that can be won there exists a certificate verifiable in polynomial

time. Such a certificate could be a winning sequence. Unfortunately, it is not

known if there always exists a winning sequence of polynominal size.

Nevertheless, the restricted version of the “Game about Squares” with in-

stances, where only one horizontal and one vertical direction are allowed, is in

NP: Every square can be pushed at most O(|S|(|S| + |A|)) times and thus the

game ends after a polynomial number of rounds. By the proof of Lemma 1, this

restricted version is NP-hard.

Acknowledgment

The author likes to thank Andrey Shevchuk for this addictive game and Jan
Schneider for valuable discussions.

References

[1] Stephen A. Cook. The complexity of theorem-proving procedures. In Pro-

ceedings of the Third Annual ACM Symposium on Theory of Computing,
STOC ’71, 1971.

[2] Andrey Shevchuk. Game about Squares. http://gameaboutsquares.com,
2014. [Online; accessed 11-August-2014].

6

http://gameaboutsquares.com

	1 Introduction
	2 Reduction from SATISFIABILITY

